Probability Generating Functions 1

Q1.

Aisha has a bag containing 3 red balls and 3 white balls. She selects a ball at random, notes its colour and returns it to the bag; the same process is repeated twice more. The number of red balls selected by Aisha is denoted by X.

(a) Find the probability generating function $G_X(t)$ of X. [2]

Basant also has a bag containing 3 red balls and 3 white balls. He selects three balls at random, without replacement, from his bag. The number of red balls selected by Basant is denoted by *Y*.

(b) Find the probability generating function $G_{\gamma}(t)$ of Y. [3]

The random variable Z is the total number of red balls selected by Aisha and Basant.

- (c) Find the probability generating function of Z, expressing your answer as a polynomial. [3]
- (d) Use the probability generating function of Z to find E(Z) and Var(Z). [5]

Q2.

A bag contains 4 red balls and 6 blue balls. Rassa selects two balls at random, without replacement, from the bag. The number of red balls selected by Rassa is denoted by *X*.

(a) Find the probability generating function, $G_X(t)$, of X. [2]

Rassa also tosses two coins. One coin is biased so that the probability of a head is $\frac{2}{3}$. The other coin is biased so that the probability of a head is p. The probability generating function of Y, the number of heads obtained by Rassa, is $G_Y(t)$. The coefficient of t in $G_Y(t)$ is $\frac{7}{12}$.

(b) Find
$$G_{\gamma}(t)$$
.

The random variable Z is the sum of the number of red balls selected and the number of heads obtained by Rassa.

- (c) Find the probability generating function of Z, expressing your answer as a polynomial. [3]
- (d) Use the probability generating function of Z to find E(Z). [2]

Probability Generating Functions 1

Q3.

The discrete random variable X has probability generating function $G_X(t)$ given by

$$G_X(t) = 0.2t + 0.5t^2 + 0.3t^3$$
.

The random variable *Y* is the sum of two independent observations of *X*.

- (a) Find the probability generating function of Y, giving your answer as an expanded polynomial in t.
- **(b)** Use the probability generating function of Y to find E(Y) and Var(Y). [5]

Q4.

Keira has two unbiased coins. She tosses both coins. The number of heads obtained by Keira is denoted by X.

(a) Find the probability generating function $G_X(t)$ of X. [1]

Hassan has three coins, two of which are biased so that the probability of obtaining a head when the coin is tossed is $\frac{1}{3}$. The corresponding probability for the third coin is $\frac{1}{4}$. The number of heads obtained by Hassan when he tosses these three coins is denoted by Y.

(b) Find the probability generating function $G_Y(t)$ of Y. [3]

The random variable Z is the total number of heads obtained by Keira and Hassan.

- (c) Find the probability generating function of Z, expressing your answer as a polynomial. [3]
- (d) Use the probability generating function of Z to find E(Z). [2]

Q5.

The random variable X has the binomial distribution B(n, p).

- (a) Write down an expression for P(X = r) and hence show that the probability generating function of X is $(q+pt)^n$, where q=1-p. [3]
- (b) Use the probability generating function of X to prove that E(X) = np and Var(X) = np(1-p). [5]

Probability Generating Functions 1

Q6.

Tanji has a bag containing 4 red balls and 2 blue balls. He selects 3 balls at random from the bag, without replacement. The number of red balls selected by Tanji is denoted by *X*.

(a) Find the probability generating function $G_X(t)$ of X. [2]

Tanji also has two coins, each biased so that the probability of obtaining a head when it is thrown is $\frac{1}{4}$. He throws the two coins at the same time. The number of heads obtained is denoted by Y.

(b) Find the probability generating function $G_Y(t)$ of Y. [2]

The random variable Z is the sum of the number of red balls selected by Tanji and the number of heads obtained.

- (c) Find the probability generating function of Z, expressing your answer as a polynomial. [3]
- (d) Use the probability generating function of Z to find E(Z) and Var(Z). [5]