Rational Functions and Graphs 2

Q1. A curve C has equation

$$y = \frac{5(x^2 - x - 2)}{x^2 + 5x + 10}.$$

Find the coordinates of the points of intersection of *C* with the axes.

[2] [4]

Show that, for all real values of
$$x$$
, $-1 \le y \le 15$.

Sketch C, stating the coordinates of any turning points and the equation of the horizontal asymptote.

[7]

Q2. The curve C has equation

$$y = \frac{2x^2 + 2x + 3}{x^2 + 2}.$$

Show that, for all x, $1 \le y \le \frac{5}{2}$.

[4]

Find the coordinates of the turning points on C.

[3]

Find the equation of the asymptote of C.

[2]

Sketch the graph of C, stating the coordinates of any intersections with the y-axis and the asymptote.

[2]

Q3. The curve C has equation
$$y = \frac{x^2}{x-2}$$
. Find the equations of the asymptotes of C. [3]

Find the coordinates of the turning points on C.

[3]

Draw a sketch of C.

[3]

Q4. The curve C has equation

$$y = \frac{x^2 + b}{x + b},$$

where b is a positive constant.

(i) Find the equations of the asymptotes of C.

[3]

(ii) Show that C does not intersect the x-axis.

[1]

(iii) Justifying your answer, find the number of stationary points on C.

[2]

(iv) Sketch C. Your sketch should indicate the coordinates of any points of intersection with the y-axis. You do not need to find the coordinates of any stationary points. [3]

Q5. The curve C has equation

$$y = \frac{x^2 + 7x + 6}{x - 2}.$$

- (i) Find the coordinates of the points of intersection of C with the axes. [2]
- (ii) Find the equation of each of the asymptotes of C. [3]
- (iii) Sketch C. [3]

Q6. The curve C has equation

$$y = \frac{x^2 + ax - 1}{x + 1},$$

where a is constant and a > 1.

- (i) Find the equations of the asymptotes of C. [3]
- (ii) Show that C intersects the x-axis twice. [1]
- (iii) Justifying your answer, find the number of stationary points on C. [2]
- (iv) Sketch C, stating the coordinates of its point of intersection with the y-axis. [3]

Q7. The curve C has equation

$$y = \frac{5x^2 + 5x + 1}{x^2 + x + 1}.$$

- (i) Find the equation of the asymptote of *C*. [2]
- (ii) Show that, for all real values of x, $-\frac{1}{3} \le y < 5$. [4]
- (iii) Find the coordinates of any stationary points of C. [2]
- (iv) Sketch C, stating the coordinates of any intersections with the y-axis. [2]

Q8. The curve C has equation $y = \frac{x^2 + x + 9}{x + 1}$.

- (a) Find the equations of the asymptotes of *C*. [3]
- **(b)** Find the coordinates of the stationary points on C. [4]
- (c) Sketch C, stating the coordinates of any intersections with the axes. [3]
- (d) Sketch the curve with equation $y = \left| \frac{x^2 + x + 9}{x + 1} \right|$ and find the set of values of x for which $2\left| x^2 + x + 9 \right| > 13\left| x + 1 \right|$. [5]