Rational Functions and Graphs 2 - MS

Q1.

1	+				
Intersections with axes.	(-1,0), (2,0) (0,-1)		B1 B1	2	
	$yx^2 + 5xy + 10y = 5x^2 - 5x - 10$				
Rearranges as a quadratic equation.	$(y-5)x^2 + (5y+5)x + 10(y+1) = 0$				
Uses discriminant.	For real x $b^2 - 4ac \ge 0$				
	$\Rightarrow (5y+5)^2 - 40(y-5)(y+1) \ge 0 \dots$		M1A1		
Solves inequality.	$\Rightarrow (y-15)(y+1) \le 0 \Rightarrow -1 \le y \le 15$	(AG)	M1A1	4	
Finds turning points.	$y = -1 \Rightarrow x = 0$ $y = 15 \Rightarrow x = -4$		M1A1 A1		
	Turning points are (-4,15) and (0,-1)				
	y = 5.		В1		
States asymptote.	Axes and asymptote correct		B1		
Sketches graph.	Graph correct.		B1B1	7	١

Q2.

Forms quadratic equation in <i>x</i> . Uses discriminant to obtain condition for	$yx^{2} + 2y = 2x^{2} + 2x + 3$ $\Rightarrow (y - 2)x^{2} - 2x + (2y - 3) = 0$ For real $x + 4 - 4(y - 2)(2y - 3) \ge 0$ $\Rightarrow (2y - 5)(y - 1) \le 0$	M1 A1 M1		
real roots.	$\Rightarrow 1 \le y \le \frac{5}{2} (AG)$	A1	4	
Differentiates and equates to zero. Solves equation.	$y' = 0$ $\Rightarrow (x^2 + 2)(4x + 2) - 2x(2x^2 + 2x + 3) = 0$ $\Rightarrow (x - 2)(x + 1) = 0 \Rightarrow x = -1 \text{ or } x = 2$	M1		
	(Or substitutes $y = 1$ and $\frac{5}{2}$ in equation of C .)			
States coordinates of turning points.	Turning points are $(-1, 1)$ and $\left(2, 2\frac{1}{2}\right)$	A1A1	3	
Expresses y in an appropriate form. (May	$y = 2 + \frac{2x - 1}{x^2 + 2}$ $As \ x \to \pm \infty y \to 2 \therefore \ y = 2$	M1	2	
alternatively divide numerator and denominator by x^2 .		Ai	2	
Finds y-intercept and intersection with $y = 2$.	Shows $\left(0,1\frac{1}{2}\right)$ and $\left(\frac{1}{2},2\right)$	B1		
Completes graph.	Completely correct graph.	B1	2	[11]

Q3.	States vertical	Vertical asymptote is $x = 2$.	B1			
	asymptote.	$y = x + 2 + \frac{4}{x - 2}$	M1			
	Finds oblique asymptote.	x-2 Oblique asymptote is $y = x + 2$.	A1	3		
	Differentiates and	$y' = 1 - \frac{4}{(x-2)^2} = 0 \Rightarrow (x-2)^2 = 4$	M1			
	equates to zero.	x = 0, 4.	A1			
	Finds x coordinates.	,	711			
		Turning points are (0,0) and (4,8)	A1	3		
	States coordinates of turning points.					
		Axes and both asymptotes correct.	B1			
	Deduct at most 1 mark	Upper branch correct.	B1			
	for poor forms at	Lower branch correct.	B1	3	101	
	infinity.				[9]	

Q4.

o(i)	Vertical asymptote is $x = -b$.	B1	
	$x^{2} + b = (x+b)(x-b) + b^{2} + b$ or	M1	By inspection or long division.
	$x+b\overline{)x^2+0x+b}$		
	Thus the oblique asymptote is $y = x - b$	A1	
		3	
(ii)	If $y = 0$ then $x^2 + b = 0$ which has no real root.	B1	Must refer to b > 0 OE
		1	
S(iii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x(x+b) - (x^2+b)}{(x+b)^2} = 0 \Rightarrow x^2 + 2bx - b = 0$	M1	Find $\frac{dy}{dx}$ and set = 0
	Or differentiating $y = x - b + \frac{b^2 + b}{x + b}$ and setting $\frac{dy}{dx} = 0$ gives		
	$1 - \frac{b^2 + b}{\left(x + b\right)^2} = 0.$		
	$b^2 + b > 0$ Therefore there are two stationary points on C	A1	Use discriminant or $(x + b)^2$ to show two stationary points
		2	

Q5.

(i)	(-6,0),(-1,0)	B1	States points of intersection with x-axis.
	(0,-3)	B1	States y-intercept
(ii)	One asymptote is $x = 2$.	B1	
	$y = x + 9 + \frac{24}{x - 2}$ \Rightarrow other asymptote is $y = x + 9$.	M1 A1	By inspection or long division. A0 if error in division
(iii)		В1	Sketches axes and asymptotes, labelled or to scale
		B1	Upper branch correctly located and orientated.
		B1	Lower branch correctly located and orientated. Penalise at most 1 mark for poor forms at infinity
		8	

Q6.

(i)	Vertical asymptote is $x = -1$.	В1	
	$x^{2} + ax - 1 = (x + 1)(x + a - 1) - a$	M1	By inspection or long division.
	$ \frac{x+a-1}{x^2+ax-1} $		
	Thus the oblique asymptote is $y = x + a - 1$	A1	
		3	
(ii)	$a^2 + 4 > 0$	B1	
		1	
(iii)	$\frac{(x+1)(2x+a) - (x^2 + ax - 1)}{(x+1)^2} = 0 \Rightarrow x^2 + 2x + a + 1 = 0$	M1	
	Discriminant = $4-4(a+1)<0$		
	Therefore there are no stationary points on C .	A1	
		2	

(iv)	Ві	Correct y-intercept and asymptotes drawn.
	B1 B1	Each branch correct
	3	

Q7.

)(i)	$y = 5 - \frac{4}{x^2 + x + 1}$	M1	Alt method: Finding limit
	As $x \to \pm \infty$, $y \to 5$: $y = 5$ CAO	A1	
		2	

)(ii)	$yx^{2} + yx + y = 5x^{2} + 5x + 1$ $\Rightarrow (y - 5)x^{2} + (y - 5)x + (y - 1) = 0$	В1	Forms quadratic equation in x.
	For real x , $(y-5)^2 - 4(y-5)(y-1) \ge 0$ (condone >)	M1	Uses discriminant
	$\Rightarrow (y-5)(3y+1) \leq 0$	M1	Factorising
	$\Rightarrow -\frac{1}{3} \le y < 5$, because $y = 5$ is an asymptote (www)	A1	Explaining strict upper inequality (AG)
		4	
(iii)	$y' = 0 \Rightarrow (x^2 + x + 1)(10x + 5) - (5x^2 + 5x + 1)(2x + 1) = 0$	M1	Differentiates and equates to 0.
	$\Rightarrow 4(2x+1) = 0 \Rightarrow x = -\frac{1}{2}, y = -\frac{1}{3}$	A1	
		2	

(iv)	JB J	BIFT	Positive y-intercept at (0,1), FT dep on minimum point from (iii).
		B1	Correct asymptote and completely correct graph.
		2	

Q8.

7(a)	x = -1	B1	States vertical asymptote.
	$y = \frac{x(x+1)+9}{x+1} = x + \frac{9}{x+1}$	M1	Finds oblique asymptote.
	y = x	A1	
		3	
7(b)	$\frac{dy}{dx} = 1 - 9(x+1)^{-2} = 0 \Rightarrow (x+1)^2 = 9$	M1 A1	Differentiates and sets derivative equal to 0.
	(2,5)	A1	
	(-4,-7)	A1	
		4	

7(c)	y 1	B1	Axes labelled and correct asymptotes drawn.
		B1	Upper branch with (0,9) stated or shown on diagram.
	*	Ві	Lower branch correct and good approach to asymptotes throughout, no extra branches.
		3	
7(d)	M†	D4 F/F	FT from sketch in (c) with asymptotes shown.

7(d)	•	B1 FT	FT from sketch in (c) with asymptotes shown.
	$x^{2} + x + 9 = \frac{13}{2}(x+1) \text{ or } x^{2} + x + 9 = -\frac{13}{2}(x+1)$ $x^{2} - \frac{11}{2}x + \frac{5}{2} = 0 \text{ or } x^{2} + \frac{15}{2}x + \frac{31}{2} = 0$	M1 M1	Finds critical points, award M1 for each case. May state that $x^2 + x + 9 = -\frac{13}{2}(x+1)$ has no real solutions since $7 > \frac{13}{2}$.
	$x=\frac{1}{2}$, 5	A1	
	$x < \frac{1}{2}$ and $x > 5$.	A1	
		5	