Differentiation 1

Q1.

The curve C has equation

$$2xy^2 + 3x^2y = 1.$$

Show that, at the point
$$A(-1, 1)$$
 on C , $\frac{dy}{dx} = -4$.

Find the value of $\frac{d^2y}{dx^2}$ at A. [5]

[3]

Q2.

A curve has parametric equations

$$x = 2\sin 2t, \quad y = 3\cos 2t,$$

for $0 < t < \frac{1}{2}\pi$. For the point on the curve where $t = \frac{1}{3}\pi$, find the value of

(i)
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
, [3]

(ii)
$$\frac{d^2y}{dx^2}$$
. [4]

Q3.

The curve C has equation

$$xy + (x+y)^3 = 1.$$

Show that
$$\frac{dy}{dx} = -\frac{3}{4}$$
 at the point $A(1, 0)$ on C .

Find the value of
$$\frac{d^2y}{dx^2}$$
 at A. [5]

Differentiation 1

Q4.

A curve has parametric equations

$$x = 2\theta - \sin 2\theta$$
, $y = 1 - \cos 2\theta$, for $-3\pi \le \theta \le 3\pi$.

Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \cot\theta,$$

except for certain values of θ , which should be stated.

Find the value of $\frac{d^2y}{dx^2}$ when $\theta = \frac{1}{4}\pi$. [3]

Q5.

The curve C has parametric equations

$$x = t^2$$
, $y = (2 - t)^{\frac{1}{2}}$, for $0 \le t \le 2$.

Find

(i)
$$\frac{d^2y}{dx^2}$$
 in terms of t , [5]

- (ii) the mean value of y with respect to x over the interval $0 \le x \le 4$, [6]
- (iii) the y-coordinate of the centroid of the region enclosed by C, the x-axis and the y-axis. [3]

Q6.

A curve C has equation $\cos y = x$, for $-\pi < x < \pi$.

(i) Use implicit differentiation to show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\cot y \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2.$$
 [4]

[4]

(ii) Hence find the exact value of $\frac{d^2y}{dx^2}$ at the point $(\frac{1}{2}, \frac{1}{3}\pi)$ on C. [2]

Differentiation 1

Q7.

It is given that $y = 2^x$.

(a) By differentiating
$$\ln y$$
 with respect to x, show that $\frac{dy}{dx} = 2^x \ln 2$. [3]

(b) Write down
$$\frac{d^2y}{dx^2}$$
.

(c) Hence find the first three terms in the Maclaurin's series for 2^x . [3]

Q8.

(a) Starting from the definitions of tanh and sech in terms of exponentials, prove that

$$1 - \tanh^2 \theta = \operatorname{sech}^2 \theta.$$
 [3]

The variables x and y are such that $\tanh y = \cos\left(x + \frac{1}{4}\pi\right)$, for $-\frac{1}{4}\pi < x < \frac{3}{4}\pi$.

(b) By differentiating the equation $\tanh y = \cos\left(x + \frac{1}{4}\pi\right)$ with respect to x, show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\csc\left(x + \frac{1}{4}\pi\right). \tag{4}$$

(c) Hence find the first three terms in the Maclaurin's series for $\tanh^{-1}\left(\cos\left(x+\frac{1}{4}\pi\right)\right)$ in the form $\frac{1}{2}\ln a + bx + cx^2$, giving the exact values of the constants a, b and c. [5]

Q9.

It is given that

$$x = \sinh^{-1} t, \quad y = \cos^{-1} t,$$

where -1 < t < 1.

(a) By differentiating
$$\cos y$$
 with respect to t , show that $\frac{dy}{dt} = -\frac{1}{\sqrt{1-t^2}}$. [4]

(b) Find
$$\frac{d^2y}{dx^2}$$
 in terms of t, simplifying your answer. [5]

Q10.

(a) By differentiating e^{-x^2} , find the Maclaurin's series for e^{-x^2} up to and including the term in x^2 . [5]