Q1.

EITHER:	State or imply non-modular inequality $(x + 3a)^2 > (2(x - 2a))^2$, or corresponding quadratic equation, or pair of linear equations $(x + 3a) = \pm 2(x - 2a)$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear	B1	
	equations	M1	
	Obtain critical values $x = \frac{1}{3}a$ and $x = 7a$	A 1	
	State answer $\frac{1}{3}a < x < 7a$	A1	
OR:	Obtain the critical value $x = 7a$ from a graphical method, or by inspection, or by solving a linear equation or inequality Obtain the critical value $x = \frac{1}{3}a$ similarly	B1 B2	
	State answer $\frac{1}{3}a < x < 7a$	B1	[4]
	[Do not condone \leq for \leq ; accept 0.33 for $\frac{1}{3}$.]		

Q2.

(i) State or imply the form
$$\frac{A}{x+1} + \frac{B}{x+3}$$
 and use a relevant method to find A or B M1

Obtain $A = 1$, $B = -1$ A1 [2]

Q3.

EITHER: Attempt to solve for
$$2^x$$
 M1

Obtain $2^x = 6/4$, or equivalent

Use correct method for solving an equation of the form $2^x = a$, where $a > 0$ M1

Obtain answer $x = 0.585$ A1

OR: State an appropriate iterative formula, e.g. $x_{n+1} = \ln((2^{x_n} + 6) / 5) / \ln 2$ B1

Use the iterative formula correctly at least once

Obtain answer $x = 0.585$ A1

Show that the equation has no other root but 0.585 A1 [4]

[For the solution 0.585 with no relevant working, award B1 and a further B1 if 0.585 is shown to be the only root.]

Q4.

(i) Substitute $x = -\frac{1}{2}$, equate to zero and obtain a correct equation, e.g.

$-\frac{1}{4} + \frac{5}{4} - \frac{1}{2}a + b = 0$	B1	
Substitute $x = -2$ and equate to 9	M1	
Obtain a correct equation, e.g. $-16 + 20 - 2a + b = 9$	A1	
Solve for a or for b	M1	
Obtain $a = -4$ and $b = -3$	A1	[5]

(ii)	Obtain que Obtain fac [The M1 if, or if two [If linear for the many states of the many s	ivision by $2x + 1$ reaching a partial quotient of $x^2 + kx$ adratic factor $x^2 + 2x - 3$ etorisation $(2x+1)(x+3)(x-1)$ s earned if inspection has an unknown factor of $x^2 + ex + f$ and an equation coefficients with the correct moduli are stated without working.] Factors are found by the factor theorem, give B1 + B1 for $(x-1)$ and $(x+3)$, amplete factorisation.]		
Q5.				
(i)	EITHER: OR:	Divide by denominator and obtain quadratic remainder Obtain $A = 1$ Use any relevant method to obtain B , C or D Obtain one correct answer Obtain $B = 2$, $C = 1$ and $D = -3$ Reduce RHS to a single fraction and equate numerators, or equivalent Obtain $A = 1$ Use any relevant method to obtain B , C or D Obtain one correct answer Obtain $B = 2$, $C = 1$ and $D = -3$ [SR: If $A = 1$ stated without working give B1.]	M1 A1 M1 A1 A1 M1 A1 M1 A1	[5]
Q6.				
EITI OR:	equati Make Obtain State a Obtain or by s Obtain State a	or imply non-modular inequality $(x-3)^2 > (2(x+1))^2$, or corresponding quadratic on, or pair of linear equations $(x-3) = \pm 2(x+1)$ reasonable solution attempt at a 3-term quadratic, or solve two linear equations a critical values -5 and $\frac{1}{3}$ can swer $-5 < x < \frac{1}{3}$ in the critical value $x = -5$ from a graphical method, or by inspection, solving a linear equation or inequality in the critical value $x = \frac{1}{3}$ similarly can swer $-5 < x < \frac{1}{3}$ of condone \le for $<$; accept 0.33 for $\frac{1}{3}$.]	B1 M1 A1 A1 B1 B2 B1	[4]

Q7.

(i) State or imply partial fractions of the form
$$\frac{A}{1-2x} + \frac{B}{2+x} + \frac{C}{(2+x)^2}$$

Use any relevant method to determine a constant

Obtain one of the values $A = 1$, $B = 1$, $C = -2$

Obtain a second value

Obtain the third value

A1

Obtain the form $\frac{A}{1-2x} + \frac{Dx+E}{(2+x)^2}$, where $A = 1$, $D = 1$, $E = 0$, is acceptable

scoring B1M1A1A1A1 as above.]

(ii) Use correct method to obtain the first two terms of the expansion of $(1-2x)^{-1}$, $(2+x)^{-1}$,

$$(2+x)^{-2}$$
, $(1+\frac{1}{2}x)^{-1}$, or $(1+\frac{1}{2}x)^{-2}$

Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction $A1\sqrt{+}A1\sqrt{+}A1\sqrt{-}$

Obtain answer
$$1 + \frac{9}{4}x + \frac{15}{4}x^2$$
, or equivalent A1 [5]

[Symbolic binomial coefficients, e.g. $\binom{-1}{1}$, are not sufficient for the M1. The f.t. is on A, B, C.]

[For the A, D, E form of partial fractions, give M1A1 $\sqrt{\text{A1}}\sqrt{\text{for the expansions then, if }D \neq 0$, M1 for multiplying out fully and A1 for the final answer.]

[In the case of an attempt to expand $(4+5x-x^2)(1-2x)^{-1}(2+x)^{-2}$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.]

[SR: If B or C omitted from the form of fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt{A1}\sqrt{1}$ in (ii).]

[SR: If D or E omitted from the form of fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt{\text{A1}}\sqrt{\text{in (ii)}}$.]

Q8.

EITHER:	State or imply non-modular inequality $(2(x-3))^2 > (3x+1)^2$, or corresponding		
	quadratic equation, or pair of linear equations $2(x-3) = \pm (3x+1)$	B1	
	Make reasonable solution attempt at a 3-term quadratic, or solve two linear		
	equations	M1	
	Obtain critical values $x = -7$ and $x = 1$	A 1	
	State answer $-7 < x < 1$	A1	
OR:	Obtain critical value $x = -7$ or $x = 1$ from a graphical method, or by inspection,		
	or by solving a linear equation or inequality	B1	
	Obtain critical values $x = -7$ and $x = 1$	B2	
	State answer $-7 < x < 1$	B1	[4]
	[Do not condone: < for <.]		

Q9.

(i)	State or imply the form $\frac{A}{1+x} + \frac{Bx+C}{1+2x^2}$	B1	
	Use any relevant method to evaluate a constant	M1	
	Obtain one of $A = -1$, $B = 2$, $C = 1$	A 1	
	Obtain a second value	A 1	
	Obtain the third value	A 1	[5]

(ii) Use correct method to obtain the first two terms of the expansion of $(1+x)^{-1}$ or

$$(1+2x^2)^{-1}$$
 M1
Obtain correct expansion of each partial fraction as far as necessary Multiply out fully by $Bx + C$, where $BC \triangleright 0$ M1
Obtain answer $3x - 3x^2 - 3x^3$ A1 [5]

[Symbolic binomial coefficients, e.g., $\begin{pmatrix} -1\\1 \end{pmatrix}$ are not sufficient for the first M1. The f.t.

is on *A*, *B*, *C*.]

[If B or C omitted from the form of fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt{\text{A1}}\sqrt{\text{In}}$ in (ii), max 4/10.]

[If a constant D is added to the correct form, give M1A1A1A1 and B1 if and only if D = 0 is stated.]

[If an extra term $D/(1+2x^2)$ is added, give B1M1A1A1, and A1 if C+D=1 is resolved to $1/(1+2x^2)$.]

[In the case of an attempt to expand $3x(1+x)^{-1}(1+2x^2)^{-1}$, give M1A1A1 for the expansions up to the term in x^2 , M1 for multiplying out fully, and A1 for the final answer.]

[For the identity $3x = (1 + x + 2x^2 + 2x^3)(a + bx + cx^2 + dx^3)$ give M1A1; then M1A1 for using a relevant method to find two of a = 0, b = 3, c = -3 and d = -3; and then A1 for the final answer in series form.]

Q10.

Obtain $1 - 6x$		B1	
State correct unsimplified x^2 term.	Binomial coefficients must be expanded.	M1	
Obtain $+24x^2$		A1	[3]

Q11.

		M1 A1	[2]
Atte	empt $p(z) \div (z+2)$, equate a constant remainder to zero and solve for m.	M1 A1	
(a)	State $z = -2$ Attempt to find quadratic factor by inspection, division, identity, Obtain $z^2 + 4z + 16$ Use correct method to solve a 3-term quadratic equation Obtain $-2 \pm 2\sqrt{3}i$ or equivalent	B1 M1 A1 M1	[5]
(b)	Obtain $\pm i\sqrt{2}$ Attempt to find square root of a further root in the form $x + iy$ or in polar form Obtain $a^2 - b^2 = -2$ and $ab = (\pm)\sqrt{3}$ following their answer to part (ii)(a) Solve for a and b	M1 A1 M1 A1√ M1	[6]
	Obt Alte Atte Obt (a)	 Attempt to find quadratic factor by inspection, division, identity, Obtain z² + 4z + 16 Use correct method to solve a 3-term quadratic equation Obtain -2 ± 2√3i or equivalent (b) State or imply that square roots of answers from part (ii)(a) needed Obtain ± i√2 Attempt to find square root of a further root in the form x + iy or in polar form Obtain a² - b² = -2 and ab = (±)√3 following their answer to part (ii)(a) 	Obtain $m = 6$ Alternative: Attempt $p(z) \div (z + 2)$, equate a constant remainder to zero and solve for m . M1 Obtain $m = 6$ B1 Attempt to find quadratic factor by inspection, division, identity, M1 Obtain $z^2 + 4z + 16$ Use correct method to solve a 3-term quadratic equation Obtain $-2 \pm 2\sqrt{3}i$ or equivalent A1 (b) State or imply that square roots of answers from part (ii)(a) needed Obtain $\pm i\sqrt{2}$ A1 Attempt to find square root of a further root in the form $x + iy$ or in polar form Obtain $a^2 - b^2 = -2$ and $ab = (\pm)\sqrt{3}$ following their answer to part (ii)(a) Solve for a and b M1