Q1.

(ii) (a) State or imply $\cos^4 \theta = \frac{1}{2}$

Obtain 0.572

Obtain -0.572

(b) Integrate and obtain form $k_1\theta + k_2 \sin 4\theta + k_3 \sin 2\theta$

Obtain $\frac{3}{32}\pi + \frac{1}{4}$ following completely correct work

Obtain $\frac{3}{8}\theta + \frac{1}{32}\sin 4\theta + \frac{1}{4}\sin 2\theta$

(i)	State or imply $dx = 2t dt$ or equivalent Express the integral in terms of x and dx	B1 M1		
	Obtain given answer $\int_{1}^{3} (2x-2) \ln x dx$, including change of limits AG	A1	[3]	
(ii)	Attempt integration by parts obtaining $(ax^2 + bx) \ln x \pm \int (ax^2 + bx) \frac{1}{x} dx$ or equivalent	M1		
	Obtain $(x^2 - 2x) \ln x - \int (x^2 - 2x) \frac{1}{x} dx$ or equivalent	A1		
	Obtain $(x^2 - 2x) \ln x - \frac{1}{2}x^2 + 2x$	A1		
	Use limits correctly having integrated twice			
	Obtain 15 ln 5 – 4 or exact equivalent [Equivalent for M1 is $(2x-2)(ax \ln x + bx) - \int (ax \ln x + bx) 2dx$]	Al	[5]	
Q2.				
(i)	Express $\cos 4\theta$ as $2\cos^2 2\theta - 1$ or $\cos^2 2\theta - \sin^2 2\theta$ or $1 - 2\sin^2 2\theta$	B1		
	Express $\cos 4\theta$ in terms of $\cos \theta$ Obtain $8 \cos^4 \theta - 8 \cos^2 \theta + 1$	M1		
	Use $\cos 2\theta = 2 \cos^2 \theta - 1$ to obtain given answer $8 \cos^4 \theta - 3$ AG	A1 A1	[4]	

B1

B1

B1

M1

A1

A1

[3]

[3]

Q3.

(i)	Atter	integration by parts and reach $\pm x^2 e^{-x} \pm \int 2x e^{-x} dx$	M1*	
	Obta	$\sin - x^2 e^{-x} + \int 2x e^{-x} dx$, or equivalent	A1	
	Integrate and obtain $-x^2e^{-x} - 2xe^{-x} - 2e^{-x}$, or equivalent Use limits $x = 0$ and $x = 3$, having integrated by parts twice Obtain the given answer correctly			dep*) [5]
(ii)	Obta Equa	correct product or quotient rule in correct derivative in any form the derivative to zero and solve for non-zero x in $x = 2$ with no errors send	M1 A1 M1 A1	[4]
(iii)		y out a complete method for finding the x-coordinate of P in answer $x = 1$	M1 A1	[2]
Q4.				
At	tempt	integration by parts and reach $k(1-x)e^{-\frac{1}{2}x} \pm k \int e^{-\frac{1}{2}x} dx$, or equivalent	M1	
		$-2(1-x)e^{-\frac{1}{2}x}-2\int e^{-\frac{1}{2}x}dx$, or equivalent	A 1	
Us	e limit	and obtain $-2(1-x)e^{-\frac{1}{2}x} + 4e^{-\frac{1}{2}x}$, or equivalent as $x = 0$ and $x = 1$, having integrated twice the given answer correctly	A1 M1 A1	[5]
Q5.				
8	(i)	Use product and chain rule Obtain correct derivative in any form, e.g. $15\sin^2 x \cos^3 x - 10\sin^4 x \cos x$ Equate derivative to zero and obtain a relevant equation in one trigonometric function Obtain $2\tan^2 x = 3$, $5\cos^2 x = 2$, or $5\sin^2 x = 3$ Obtain answer $x = 0.886$ radians	M1 A1 M1 A1	[5]
	(ii)	State or imply $du = -\sin x dx$, or $\frac{du}{dx} = -\sin x$, or equivalent	B1	
		Express integral in terms of u and du Obtain $\pm \int 5(u^2 - u^4) du$, or equivalent	M1 A1	
		Integrate and use limits $u = 1$ and $u = 0$ (or $x = 0$ and $x = \frac{1}{2}\pi$)	M1	
		Obtain answer $\frac{2}{3}$, or equivalent, with no errors seen	A 1	[5]

Q6.

(i)	Use product rule	M1	
	Obtain correct derivative in any form	A1	
	Equate derivative to zero and solve for x	M1	
	Obtain answer $x = e^{-\frac{1}{2}}$, or equivalent	A1	
	Obtain answer $y = -\frac{1}{2} e^{-1}$, or equivalent	A1	[5]
(ii)	Attempt integration by parts reaching $kx^3 \ln x \pm k \int x^3 \cdot \frac{1}{x} dx$	M1*	
	Obtain $\frac{1}{3}x^3 \ln x - \frac{1}{3} \int x^2 dx$, or equivalent	A1	
	Integrate again and obtain $\frac{1}{3}x^3 \ln x - \frac{1}{9}x^3$, or equivalent	A1	
	Use limits $x = 1$ and $x = e$, having integrated twice	M1(dep*)	
	Obtain answer $\frac{1}{9}(2e^3+1)$, or exact equivalent	Al	[5]
	[SR: An attempt reaching $ax^2 (x \ln x - x) + b \int 2x(x \ln x - x) dx$ scores M1. The second of the sec	Then give the	
	first A1 for $I = x^2 (x \ln x - x) - 2I + \int 2x^2 dx$, or equivalent.]		

Q7.

10	(i)	State	or imply $\frac{du}{dx} = \sec^2 x$	B1	
		Expr	ess integrand in terms of u and du	M1	
		Integ	rate to obtain $\frac{u^{n+1}}{n+1}$ or equivalent	A1	
		Subs	titute correct limits correctly to confirm given result $\frac{1}{n+1}$	A1	[4]
	(ii)	(a)	Use $\sec^2 x = 1 + \tan^2 x$ twice	M1	
			Obtain integrand $\tan^4 x + \tan^2 x$	A1	
			Apply result from part (i) to obtain $\frac{1}{3}$	A1	[3]
			Or Use $\sec^2 x = 1 + \tan^2 x$ and the substitution from (i)	M1	
			Obtain $\int u^2 du$	A1	
			Apply limits correctly and obtain $\frac{1}{3}$	A1	
		(b)	Arrange, perhaps implied, integrand to $t^9 + t^7 + 4(t^7 + t^5) + t^5 + t^3$	B1	
			Attempt application of result from part (i) at least twice	M1	
			Obtain $\frac{1}{8} + \frac{4}{6} + \frac{1}{4}$ and hence $\frac{25}{24}$ or exact equivalent	A1	[3]

Q8.

5 (i) Differentiate to obtain
$$4\cos\frac{1}{2}x - \frac{1}{2}\sec^2\frac{1}{2}x$$

Equate to zero and find value of $\cos\frac{1}{2}x$

Obtain $\cos\frac{1}{2}x = \frac{1}{2}$ and confirm $\alpha = \frac{2}{3}\pi$

A1 [3]

(ii) Integrate to obtain $-16\cos\frac{1}{2}x...$
 $\dots + 2\ln\cos\frac{1}{2}x$ or equivalent

B1

Using limits 0 and
$$\frac{2}{3}\pi$$
 in $a\cos\frac{1}{2}x + b\ln\cos\frac{1}{2}x$ M1

Obtain
$$8 + 2 \ln \frac{1}{2}$$
 or exact equivalent A1 [4]

Q9.

State or imply form
$$A + \frac{B}{2x+1} + \frac{C}{x+2}$$

State or obtain $A = 2$

Use correct method for finding B or C

Obtain $B = 1$

Obtain $C = -3$

Al

Obtain $2x + \frac{1}{2}\ln(2x+1) - 3\ln(x+2)$ [Deduct $B1\sqrt[3]{}$ for each error or omission]

Substitute limits in expression containing $a\ln(2x+1) + b\ln(x+2)$

Show full and exact working to confirm that $8 + \frac{1}{2}\ln 9 - 3\ln 6 + 3\ln 2$, or an equivalent expression, simplifies to given result $8 - \ln 9$

Al [10]

[SR:If A omitted from the form of fractions, give B0B0M1A0A0 in (i); B0√B1√B1√M1A0 in (ii).]

[SR: For a solution starting with $\frac{M}{2x+1} + \frac{Nx}{x+2}$ or $\frac{Px}{2x+1} + \frac{Q}{x+2}$, give B0B0M1A0A0 in (i); B1 $\sqrt{B1}\sqrt{B1}$, if recover correct form, M1A0 in (ii).]

[SR: For a solution starting with $\frac{B}{2x+1} + \frac{Dx+E}{x+2}$, give M1A1 for one of B=1, D=2, E=1 and A1 for the other two constants; then give B1B1 for A=2, C=-3.]

[SR: For a solution starting with $\frac{Fx+G}{2x+1} + \frac{C}{x+2}$, give M1A1 for one of C = -3, F = 4, G = 3 and A1 for the other constants or constant; then give B1B1 for A = 2, B = 1.]

Q10.

(i) State or imply 2u du = -dx, or equivalent B1 Substitute for x and dx throughout M1 Obtain integrand $\frac{-10u}{6-u^2+u}$, or equivalent **A**1 Show correct working to justify the change in limits and obtain the given answer correctly **A**1 [4]

(ii) State or imply the form of fractions $\frac{A}{3-u} + \frac{B}{2+u}$ and use a relevant method to find A or BM1**A**1 Obtain A = 6 and B = -4A1√+ A1√ Integrate and obtain $-6\ln(3-u)-4\ln(2+u)$, or equivalent Substitute limits correctly in an integral of the form $a \ln(3-u) + b \ln(2+u)$ M1 Obtain the given answer correctly having shown sufficient working

[The f.t. is on A and B.]

A1 [6]